Discrimination of Human Cell Lines by Infrared Spectroscopy and Mathematical Modeling
نویسندگان
چکیده
Variations in biochemical features are extensive among cells. Identification of marker that is specific for each cell is essential for following the differentiation of stem cell and metastatic growing. Fourier transform infrared spectroscopy (FTIR) as a biochemical analysis more focused on diagnosis of cancerous cells. In this study, commercially obtained cell lines such as Human ovarian carcinoma (A2780), Human lung adenocarcinoma (A549) and Human hepatocarcinoma (HepG2) cell lines in 20 individual samples for each cell lines were used for FTIR spectral measurements. Data dimension were reduced through principal component analysis (PCA) and then subjected to neural network and linear discrimination analysis to classify FTIR pattern in different cell lines. The results showed dramatic changes of FTIR spectra among different cell types. These appeared to be associated with changes in lipid bands from CH2 symmetric and asymmetric bands, as well as amide I and amid II bands of proteins. The PCA-ANN analysis provided over 90% accuracy for classifying the spectrum of lipid section in different cell lines. This work supports future study to establish the data bank of FTIR feature for different cells and move forward to tissues as more complex systems.
منابع مشابه
Discrimination of Human Cell Lines by Infrared Spectroscopy and Mathematical Modeling
Variations in biochemical features are extensive among cells. Identification of marker that is specific for each cell is essential for following the differentiation of stem cell and metastatic growing. Fourier transform infrared spectroscopy (FTIR) as a biochemical analysis more focused on diagnosis of cancerous cells. In this study, commercially obtained cell lines such as Human ovarian carcin...
متن کاملDiscrimination of Human Cell Lines by Infrared Spectroscopy and Mathematical Modeling
Variations in biochemical features are extensive among cells. Identification of marker that is specific for each cell is essential for following the differentiation of stem cell and metastatic growing. Fourier transform infrared spectroscopy (FTIR) as a biochemical analysis more focused on diagnosis of cancerous cells. In this study, commercially obtained cell lines such as Human ovarian carcin...
متن کاملCisplatin Resistant Patterns in Ovarian Cell Line Using FTIR and Principle Component Analysis
Cisplatin is a common chemotherapeutic agent that used for treatment of many solid cancers. Rapid identification of chemotherapy resistance is very important and may lead to effective treatment plan. Spectroscopy techniques, such as infrared spectroscopy, which are sensitive to biochemical composition of samples, have shown potentials to discriminate tissues. Developing in Fourier transform inf...
متن کاملCisplatin Resistant Patterns in Ovarian Cell Line Using FTIR and Principle Component Analysis
Cisplatin is a common chemotherapeutic agent that used for treatment of many solid cancers. Rapid identification of chemotherapy resistance is very important and may lead to effective treatment plan. Spectroscopy techniques, such as infrared spectroscopy, which are sensitive to biochemical composition of samples, have shown potentials to discriminate tissues. Developing in Fourier transform inf...
متن کاملInteraction of Cisplatin with Cellular Macromolecules: A Fourier Transform Infrared Spectroscopy Study
Platinum is a metallic element, which may react with our cellular component through its involvement in cancer chemotherapy medications. Cisplatin is one of the most useful antineoplastic drugs against human ovarian carcinoma, which has the central element of platinum in its structure. The nature of chemical interaction between platinum and cellular macromolecules is yet to be understood. We exa...
متن کامل